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LEITER TO THE EDITOR 

Gaussian smearing of spin weight functions in models of 
phase transitions 

Mustansir Barmat 
Baker Laboratory, Cornell University, Ithaca, New York 14853, USA 

Received 16 August 1983 

Abstract. By smearing with a Gaussian distribution a family of single-spin weight functions 
is constructed which interpolates between an arbitrary single-spin distribution and a pure 
Gaussian. The observation of Baker and Bishop concerning the factorisability of the 
partition function of the double Gaussian model remains valid for all Gaussian-smeared 
models. The effects of smearing Gaussian and spherical weight functions are studied in 
further detail. 

The statistical properties of a system with many degrees of freedom, say spins on lattice 
sites, depend not only on the nature of the point-to-point coupling, but also on the 
weight function which characterises the non-interacting single-spin distribution on each 
site. Since changes in the weight function can affect critical behaviour, it is instructive 
to study relationships between models with different weight functions. In this letter, 
we investigate a class of such relationships. 

The weight function of the double-Gaussian model (Baker and Bishop 1982) 
interpolates between that of the spin-; Ising model and that of a pure Gaussian model 
(Berlin and Kac 1952). This model has been studied recently, both to estimate 
corrections to scaling in Ising-like systems (Chen et a1 1982) and to investigate the 
displacive to order-disorder crossover in structural transitions (Baker and Bishop 
1982, Baker et a1 1982). In particular, Baker and Bishop showed that the partition 
function of the double-Gaussian model with short-ranged interactions is the product 
of the partition function of a spin-$ king model with longer-ranged interactions and 
the partition function of a Gaussian model. Nickel (1981) pointed out that this 
decomposition allows one to define an analytic continuation of the model beyond the 
Gaussian and the Ising limits. 

In this letter, we introduce a construction, ‘Gaussian smearing’, of a family of 
weight functions which interpolates between an arbitrary weight function and a 
Gaussian. We point out that the factorisability of the partition function noticed by 
Baker and Bishop in the double-Gaussian case holds equally for every such family, 
and use this result to discuss the crossover behaviour near the Gaussian limit. We also 
investigate two cases in a little more detail: (i) when the initial (unsmeared) weight 
function is a Gaussian; (ii) when the unsmeared spins obey a spherical constraint. 

t On leave from Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India. 
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Consider, to be specific, a system with scalar ( n  = 1)-component continuous spins 
S with -a< S < CO. If the initial weight function is W,(S) ,  we define the Gaussian- 
smeared weight function by 

With pairwise coupling K ,  between sites and an external field h, the partition function 
is taken to be 

L ( K ) = [ n d 4 ,  ~ y ~ 4 1 ~ ~ ~ p ( ~ ~ ~ , l ~ 1 4 , + ~ ~ 4 1 ) .  (2) 

Since the kernel in (1) is designed to approach the delta function a(+ - S )  as y + 1-, 
the distribution Wy( S )  in general evolves smoothly into the original distribution Wl(S) 
as y approaches 1. In general, if Wl(S) is even and its second cumulant is finite and 
normalised to unity, the same is true of W,(#J). The ratio of higher cumulant moments 
p'2"'(y)/p'2"'(1) is then y" for n z 2 .  As y varies between 0 and 1, W,(4) evolves 
from a Gaussian to WI(4).  However, as pointed out by Nickel (1981) for the 
double-Gaussian model, and as discussed below for the general case, there is in general 
an analytic continuation to values of y outside this range. 

integrations may be performed after shifting 
4, to 

On substituting (1) into ( 2 ) ,  the 

(3) 4 ;  =41+-x  JY (M-l ) , ,S l+hn; l - ' (0)r ,  SI. 
1 - Y  I 1 

The result can be written 

Z ( K )  = Z G ( M ) Z ( L )  (4) 

( 5 )  

where the pure Gaussian factor is defined by 

ZG(M) = (1 - y)-"'(det M)'" exp(h2fi- ' (0))  

Z ( L )  = dS Wl( S )  exp i y  L,,S,S, + H SI . (6) 

while the new, non-trivial, factor is 

L ( Jl ) 
If, as is usually appropriate to assume, the couplings K ,  are translationally invariant, 
the interaction matrices M = [M,]  and L = [L,,]  are most conveniently defined in terms 
of their Fourier transforms. Thus one finds 

f i ( q ) = ( l - y ) - l - E Z ( q )  

L-'( q )  = I?-'( q )  - (1 - y )  

Z(q) =C exp(iq - r i i ) ~ l i  
where 

i 
(9) 

and fi(q).-and L(q)  are defined similarly. The field H in (6) is given by 

H = Jy h/ ( 1 - I? (0) ( 1 - y ) ) . (10) 
If y # 1, the couplings yL, extend over all pairs i, j even if K,, is non-zero only 

between nearest neighbour sites i, j .  Suppose henceforth that the interactions K,, are 
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ferromagnetic so that K ,  = L 0 and that the lattice is bipartite. If 0 < y < 1, the 
intersite couplings yLij are ferromagnetic and decay exponentially at large distances, 
with the range of interaction increasing as y +. O+ (Baker and Bishop 1982). If y < 0, 
the couplings are antiferromagnetic, while if y >  1 there are couplings of both signs. 
For instance, in this latter case, on a simple cubic lattice yLij is ferromagnetic if site j 
can be reached from site i by taking an odd number of steps, and is antiferromagnetic 
if the number of steps is even. The ferromagnetic couplings are stronger. 

Besides the relation between partition functions, other correspondences may be 
established: for instance the correlation functions are connected by 

while ( . ) K  denotes a thermal average with the weight function W, and interactions 
K,, and ( denotes an average with weight function W ,  and interactions yLij (including 
yLii). If y = O,, the susceptibility xK (0) reduces to that of a Gaussian model with a 
transition at K ( 0 )  = 1. If y > 0, there is, in general, a transition at a lower transition 
temperature, with distinct critical behaviour. The crossover near the multicritical point 
y=O,  k(O)= 1 may be studied with the help of (11). For small y, we find the 
susceptibility 

X K  (0)  = (1  - I2 (0)I-l +;y2p4L;/( 1 - I2(0))’ (13) 
where p4 is the fourth cumulant moment of W ,  ( S )  and L: is the y = 0 value of Lii 

+ (Ad - 1) - B d (  1 -k(o))(d-2)’2 as EZ(0) + 1, (14) 
where Ad is a d-dimensional Watson integral and Bd is a constant. Comparison with 
the conventional crossover form 

yields, for d > 2 ,  the crossover exponent 

and the scaling fields 

where the scaling axis slope e is given by 

e- ’=- ;pq(&-l ) .  (19) 

W , ( S )  = $ S ( S - l ) + S ( S + l ) ]  (20) 

Let us now address some specific examples. If the original weight function W,  is 
that of the spin-4 Ising model 

we recover the results of Baker and Bishop for the double-Gaussian model. For that 
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model, Nickel (1981) has pointed out that ( 5 )  and (6) define an analytic continuation 
of Z ( K )  beyond 0 y C 1. However, the G:ussian partition function Z G ( M )  diverges 
once i ( q )  vanishes for any q. Note that L ( q )  diverges at the same point. 

These considerations on the continuation and on the divergence of Z G ( M )  apply 
also to the more general case considered here. -For the ferromagnetic models on 
bjpartite lattices that we are considering, Z, (M)  converges in the region - 1 s  
K(O)(  1 - y )  S 1. This is the unshaded region in figure 1. However, as we shall see 
below, the divergences of Z G ( M )  may sometimes be cancelled by Z ( L ) .  

Rc 0) 
Figure 1. The typical phase diagram for Gaussian smeared models. As y varies from 0 
to 1 the weight function evolves from a pure Gaussian to the unsmeared function W,. 
The Gaussian partition function diverges along the dotted lines. Nevertheless the full 
partition function Zy for the special cases of the Gaussian and spherical models can be 
continued into the shaded region; the broken and full curves represent the critical lines 
for these two models. 

Consider first the case when the original model is Gaussian, i.e. 

w,(s) = ( 2 ~ ) - ’ ’ ~  exp(-tS2). (21) 
Then (1) gives Wy(4) = Wl(4)  for all y. The critical line k(0) = 1 (shown broken in 
figu5e 1) continues into the shaded regions and there is no other anomaly in the 
(y,  K ( 0 ) )  plane. Although Z G ( M )  diverges at the boundary of the shaded region in 
figure 1, the product Z ( K )  = Z G ( M ) Z ( L )  is well behaved. Similarly, there are cancella- 
tionsAbetween the two terms on the right-hand side of ( 5 )  so that x ( q )  remains finite 
for K ( 0 )  < 1. 

Let us now incorporate a spherical constraint (Berlin and Kac 1952) by the 
replacement 

Now Z ( L )  is the partition function of a spherical model with interactions yL,, and we 
have 

(23) (S,S-,) = ( 2  - y - m - l  
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where in the disordered phase z is determined by the usual mean spherical constraint 
r 

which can be rewritten as 

At criticality, one has z = &O), and the spherical condition determines the equation 
of the critical line as 

where 

If Kij  is non-zero for nearest neighbour pairs ( i ,  j )  only, Ad is Watson’s integral (with 
Ad 2: 1.5164 for a simple cubic lattice). 

From (1 1) we find the susceptibility is 

XK(0) =[z( l  - Y ) +  Yl/{z-[y+ z(1- Y)li(o))* (28) 

Evidently xK (0) diverges along the critical line with Gaussian exponents if y = 0 and 
spherical model exponents elsewhere. 

As with the Gaussian model, the critical line continues smoothly into the shaded 
regions. Z G ( M )  diverges along the boundary of the shaded region but the product 
ZG(M)Z(L)  is well behaved, suggesting that formulae such as (28) may provide 
analytical continuations into the shaded regio?. Note that the continuations of the 
critical line bend over and approach y + 1 as K ( 0 )  + 00, implying the loss of order at 
low temperatures (re-entrant behaviour). 

However, the absence of anomalies along the loci Z?(O)( 1 - y)  = *1 for the Gaussian 
and spherical models is probably peculiar to these models; for models with weight 
functions which decay more rapidly than Gaussian, we expect both Z G ( M )  and Z ( K )  
to diverge along the boundaries of the shaded regions. For example suppose 

Wl(S) - exp(-clSI”) asISJ+m (29) 

WJ4) - expC-4’/2(1- y) - C ’ + ~ / ( ~ - - I ) ]  

where c is a positive constant and CY > 2. Then (1) gives 

(30) 

as I4l-tCO. Here c’ depends on c, CY and y, but the important point is that 
becomes negligible in comparison with 4’ as 4 + 00. Thus the large 4 contribution 
to the integrals in (2) is essentially the same as from the Gaussian factor, and so both 
ZG(M)  and Z ( K )  diverge along the boundaries of the shaded region in figure 1. An 
interesting unanswered question concerns the nature of the singularity in (SqS-q)L at 
the intersection of the critical curve and the boundary of the upper shaded region for 
models of the type (29). 
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